AppVet

Version 1.01

July 2014

Stephen Quirolgico
Tom Karygiannis

Jeff Voas
Computer Security Division
ler Information Technology Laboratory

National Institute of Standards and Technology

Any mention of commercial products within NIST documents is for information only; it does not imply
recommendation or endorsement by NIST.

Contents

1 INTRODUCTION ...ttt ettt b e bt e bt et e e s besseesbe e sbe e sbeenbeanbeannesneesbeenbeens 1
11 CHIBINTS ..ttt n e 2
1.2 TIOONS ettt bttt 2

1.2.1 SYnchronous TOOI SEIVICE......c.coiiiiiie ittt 2
1.2.2 ASYNChronous TOOI SEIVICE.........ccoiiiiieiiiiiiesise e 3
1.2.3 PUSN TOOI SEIVICE ..ottt 3
1.3 NIST SOftWAre AGrEEIMENT.cveiiiiiierieite ettt sb e rearenreas 5

2 SYSTEM REQUIREMENTS ...ttt e bbbttt nnee 6
2.1 Hardware REQUITEMENTS..........uoiiiiiiiiisie ettt 6
2.2 P1atform REQUITEIMENTSccuiiieie ettt s re st s re e s re e sre e neas 6

22,1 JAV8 it h bttt b e b e bt b e arr e neere e 6
2.2.2 Android APKTOOl (ANdroid ONlY)cooiiiiiiiieieieeeeseese e 6
2.2.3 APACNE TOMCAL.......cuiiiieiiiiiie et 6
2.24 MYSQL .o 7

3 INSTALLATION . ettt sttt ettt s et e bt e bt e be e s te e s eesbeesbeesbeebeanbeenbesneenbeenbeens 8
3.1 APPVEL INSTAHIET ... 8
3.2 APPVEL CONFIGUIALION.cviiiieiiicie et be e 11
3.3 TOOl Service CoNfIQUIALION.........ccciiieieieicece e 12

4 USER'S GUIDE ...ttt ettt b e sb e et e sn e a e st e b e e beenennne s 13
4.1 LaUNCRING APPVEL ... 13
4.2 ApPP Management INTEITACE.coiiiiiiieee e 13

4.2.1 Operation BULLONS...........c.oiiiiiiiie ettt st nas 14
2.2 IMIBINUS .ttt bbbt sh ettt b e b et et nneene e 15
4.2.3 TOOI STALUS ..ottt bbb 15
N o]] - (L OSSPSR 16
4.3 MaNAGING TOOIS ..o s b ra e b e nre s 17

5 DEVELOPER’S GUIDEcooiiiiiiiiiiiecince sttt 18

5.1 B C PSR .t 18
5.1.1 INtegrating TOMCAL........coviiiiieie ettt ettt e e neeseeereeneens 18
5.1.2 DoWnloading APPVEL......oce ittt 18
5.1.3 IMPOItiNG APPVEL. ..ottt ettt 19
514 ApPVet COMPIALION........coiiiiiiiiie s 19
5.1.5 INStAHlING APPVEL. ... e 19
5.1.6 LauNCNING APPVEL.....oouiiiiiieieiese ettt 19
517 EXPOITiNG APPVEL. ..ottt 19

5.2 APPVEE ATCRITECTUIE ...t sttt 19
B5.21 APPVEE SEIVIEL ...ttt 20
522 GWT CHENUSEIVEL ..ottt sttt sttt st esbe e et e te s e sreeraenee s 20
5.2.3 TOOI IMBNAGET ..ottt e ene s 20

L S © 11] OO RTTT 21

5.3 APPVEtL SOUICE COUE FIlES.......ciiiiiiiieiiieee e 21
5.4 I 1 0 O PR 21
55 TOOI SEIVICES ... bbbt bbbttt 22
APPENDIX A APPVET APL ..ttt ne e 23
AL AUTHENTICATE ..ottt sttt ste s et sneesaenneaneeseeeneennens 23
ALLHTTP REQUESE ...ttt nns 23
ALL2 HTTP RESPONSE ...t eitieiteectee sttt ete et e et e st et e e te e sbe e sbeesna e s beanbe e beesbeesbeesrneaneeenreens 23

A2 GET _STATUS bt b e bbb bt e be et sbe b 23
A2 L HTTP REQUESE ...ttt nns 23
AL2.2 HTTP RESPONSE ...ecutieitieiteeitie st sttt et e st e st e eaae e te e sbe e saeesna e s sbe s be e beesbeesbeesrneanneenreens 23

A3 GET_TOOL_REPORT ...ttt bbb bbb s e 24
ABLHTTP REQUESE ...ttt nre s 24
AB2 HTTP RESPONSEc.eiiieiiitieiie sttt ettt et r e sre e sr e b b sre e sr e e e 24

AL GET _APP _LOG ... ittt sttt bbb bttt b e bt b bbbt be s 24
AL L HTTP REQUESTveiiiie et iee ettt sttt et e e be et e e ssee e st e e snbeeebeeesteeesnbneenneeenn 24
AL 2 HTTP RESPONSEeiiieiiitieiie sttt sttt sttt et r et r e sre e sr e re e b sre e sreanee e 24

A5 GET _APPVET _LOG ...ttt ettt st sttt nae st b 25
AL L HTTP REQUESTeeeiiie ettt ettt sttt s e e stae e sbe e st e e sn b e e e beeenteeesnteeesnnee e 25
AL 2 HTTP RESPONSE ...c.eiiieiiiteeiie sttt sr et r e sr e b n e sr e nnesn e e nnas 25

A.6 DOWNLOAD_REPORTS ... ooiiiitiie it ste et sae e ste st steesaestessaesaessaaneeseessaeneens 25
ALB.L HTTP REQUESTeeiitie ettt ettt ettt e e st e et e e sste e st e e snbe e e be e e ntaeesntneesnbee e 25
ALB.2 HTTP RESPONSEeeieeiiitieiie sttt sttt sttt ettt r e sre e sr et e b sre e e sr e e e 25

AT SUBMIT _APP ettt st et e e s te s e e tesreenaesteeneesreereeee s 26
ALB.L HTTP REQUESTeeiitieiiie ittt ettt e et e e s be et e s sae e st e e snbe e e beeestaeesntneenneeean 26
ALB.2 HT TP RESPONSE ...eeiiitiiiiie ittt e sttt e st stte e s e et e e snbe e e sta e e ssbe e s be e e ssbeeebeeestaeesnraeesneeeans 26

A8 SUBMIT _REPORT ...ttt sttt e te et sne et e steeneeseeeneenne s 26
ALB. L HTTP REQUESTeeeieie ettt ettt s e e st e e e e stae e s ste e st e e snbeeeneeesteeesntneennneeans 26
ALB.2 HT TP RESPONSE ...ceeitieetiee it cite e sttt e sttt stte e st e et e e s e e e staeesnee e s beeesnbeeeseeesseeeanneeenneeeans 26
APPENDIX B: TOOL SERVICE API REQUIREMENTS ..ot 27
B.1 General REQUITEMENTS.couiiiieieiiii ittt 27
0 0 I I e T [T RS 27
B.1.2 Additional INfOrMAatIONcooiiiiiiiieeee e e 27

B.2 SYNCNrON0OUS RESPONSEouviuiiiieiieiiiti sttt 27
B.3 ASYNCNIONOUS REQUEST ...ttt 28
B.4 Asynchronous and PUSH REPOITSc..ccviiiiieiiii ettt 28
APPENDIX C: APPVET PROPERTIES SCHEMAt 29
APPENDIX D: TOOL SERVICE ADAPTER SCHEMA ...ttt 33
APPENDIX E: APPVET DATABASEottt steente e s e s e snaesne e e eneeas 38
[1= o] [T D= o= OO RRR 38
| - o] [TV R =T e) o F= TSR 38
I I 1 o] (=T o] o = PSP 39
o I o] (IR o ol = TSR 40
APPENDIX F: CHANGE HISTORY ..ottt st ste e ene s e snaenneenaeeneeas 41
TILAILA ..ottt ettt bRt Re et e Re et nreate e tenreente e 41

RS 7 SR 41

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 5-1.
Figure 5-2.

List of Figures

Synchronous tool Service ProtoCol...........ccooeiiiiiiiiiiiieee e 3

Asynchronous tool Service ProtoCoL.ccccvvieiiiiiiie e 4
Push tool SErVICe ProtOCOL.........ccueiviecie ettt 4
APPVELINSTAIIET. ... 8
HOSE GIA10Q. ...t 9
W0 [0TI [T oo OSSR 10
PIAtFOrm didlog.cveeeeeieiee e 10
ApPPVet iNStallation PrOGrESS.coiviirerieieieirere s 11
APPVEL FIlES TIFECLONY. ..veeviiiie et 11
APPVEL LOGIN SCIEEN. ...ttt sre e pe e snas 13
AppVet app management INTErfaCe.coovviiiiiiiiiieee s 14
USEE SEIHINGS. .. e evecteceie ettt st s be e e be et e e st e te e e sbeete e besreetestaennenras 15
TOOI SEALUSES. .ttt sttt sttt et sttt et eenenreas 15
AADD SEALUS. <.ttt e e n e r e s 16
APPVEL ATCNITECIUIE. ...t 20
APPVEL SOUICE COUL FEIBASE.viviieieiecteeie ettt st re e e 21

List of Tables

Table 4-1. AppVet Operation DULLONS.c.ccciiiiiiiie et 14
Table 4-2. Tool status and risk assessSment deSCrPLIONS.ccoererererieiieiieise e 16
Table 4-3. ApPP StAtuS AESCIIPLIONS.ouviiiiiiiiiiiiite e 17

Code Listings

Listing C-1. AppVetProperties XML SChEMA.c.covviiiiiiiiiii e 29
Listing D-1. Tool Service Adapter SCNEMAL..........c.cocviieiiiieieie e 33

1 INTRODUCTION

AppVet is a simple web-based application for vetting mobile apps. It facilitates the app vetting
workflow by providing an intuitive user interface for submitting and testing apps, accessing
reports, and assessing risk. AppVet is designed to easily and seamlessly integrate with a wide
variety of third-party tools including static and dynamic analyzers, anti-virus scanners, and
vulnerability repositories through the specification of simple APIs and requirements. AppVet
also supports easy and seamless integration with clients including app stores and continuous
integration environments. AppVet is shown in Figure 1-1.

ﬁ

<« C' & hitps://appsec.nist.gov/appvet/ & =

DX

AppVet a NIST

Maobile App Vetting System
Steve Q. Help Admin

Apps S+ ¥+ [x|a
— com.example.FunGame
D App Status User Date/Time Version: 5.1.0
3393884 # com.example Mad PASS steveq 2014-04-05 20:36:47
PreProcessing
2387818 L le_ Utility PASS tevs 2014-04-05 20:36:13
. £om.exampie. LY SIEVEq Registration PASS Results
1021678 i com.example.FunGame WARNING steveq 2014-04-05 20:35:38 Android Manifest PASS Results
5447891 B com example Mail PASS steveq 2014-04-05 20:34:56 » Tools
Test Tool 1 PASS Results
Test Tool 2 Results

M 4 140f4 b M

Last updated: 2014-03-20 16:08:122

Figure 1-1. AppVet.

An AppVet system comprises an AppVet web application and its related tools and clients. In an
AppVet system, the app vetting workflow begins when a client submits an app to AppVet. When
AppVet receives an app, it registers the app and performs some pre-processing of the app.
Preprocessing is used to extract meta-data about an app and possibly provide additional
functionality such as ensuring that the app conforms to specific requirements of the hosting
organization. After preprocessing an app, AppVet sends the app and related information to one or
more tools for testing and evaluation. When a tool completes its analysis, it returns a report and
risk assessment to AppVet which, in turn, makes them available to clients. In addition, AppVet
generates an overall risk assessment based on risk assessments from all tools.

The AppVet system architecture is shown in Figure 1-2.

O Clients i

Applications Users
A A

o D/ N]
Q Report A p p Vet Fles

Mobile App Vetting System
D [e mnmnanas >
* k G

.......... K / Database

Figure 1-2. AppVet system architecture.

1.1 Clients

AppVet relies on clients to submit apps to the system and to consume reports and risk
assessments. Clients include users (such as developers and analysts) and applications (such as app
stores and continuous integration environments). Using a web browser, users can access AppVet
via the AppVet app management interface. This interface provides support for uploading apps,
accessing reports and assessing risk. Applications access AppVet through the AppVet API as
described in Appendix A.

1.2 Tools

AppVet relies on tools to test and evaluate apps.* A tool is provided by a third-party vendor, tool
developer, or user that wants to leverage an existing tool. In an AppVet system, tools are made
available as online services called tool services. To facilitate integration of tool services with
AppVet, AppVet requires these services to implement a simple REST API for submitting apps to
the service and for acquiring reports and risk assessments from the service. This APl must also
conform to additional requirements as described in Appendix B, Tool Service APl Requirements.
AppVet defines three types of tool services: synchronous, asynchronous, and push tool services.

1.2.1 Synchronous Tool Service

A synchronous tool service is a service that responds to an AppVet HTTP Request message with
a report and risk assessment via the corresponding HTTP Response message. Synchronous tool
services are aimed at analyses that can be performed relatively quickly on an app. Figure 1-3
shows the AppVet synchronous tool service protocol.

'Note that neither the AppVet binary nor source code release include tools. Tools must be added and configured
separately by the AppVet administrator.

- Method: POST Synchronous
AppVvet | | -sting usernane Tool Service
Mabila App Velling Systam - Strlng: passwnrd
’ = File; appfile Q
H
HTTP Reguest APT

= Receive app

» Analyze app
HTTP Response <« « Generate report
)

= Generate rigk

W

e

= HTTF status code
= String: toolrisk
= String: reportc

Figure 1-3. Synchronous tool service protocol.

The AppVet API requirements for synchronous tool services are described in Appendix B. For
tool services that take an extended amount of time to test and evaluate an app, an asynchronous
tool service type may be used.

1.2.2 Asynchronous Tool Service

An asynchronous tool service is a service that responds to an AppVet HTTP Request with a
report and risk assessment via a new HTTP Request to AppVet at some unspecified point in the
future. Figure 1-4 shows the AppVet asynchronous tool service protocol. For more details about
asynchronous services see Appendix B.3, Asynchronous Request-Response, and Appendix B.4,
Asynchronous and Push Reports.

1.2.3 Push Tool Service

A push tool service is a service that sends a report and risk assessment to AppVet without first
receiving a corresponding request from AppVet. Such cases occur, for example, if the service
analyzes an app on behalf of another tool service. After the tool service analyzes the app, it sends
the report and risk assessment to AppVet as shown in Figure 1-5. For more details about push
services see Appendix B.4, Asynchronous and Push Reports.

AppVvet

Mabile App Verting System

= Method: POST
= String: username
= String: password
= File: appfile

¥

HTTF Feguest

Asynchronous
Tool Service

o)

A8F

A

HTTP Resporse

W

» Redeive app

ART

A

A

HTTP Feguest

= Analyze app
» Generate report
= Generate risk

£

S

HTTP Reaﬁi’mge

o

W

HTTF status code

= Methad : POST

= String: comoand
= String: username
= String: password
= String: toolrisk
» File: reportfile

Figure 1-4. Asynchronous tool service protocol.

AppVvet

Mabile App Verting System

= Method : POST

= String: comoand
= String: username
= Sthing: password
= Sthing: toolrisk

» File: reportfile

Push
Tool Service

o)

-

HTTF status code

4 » Heceive app
= Analyze app
{f,_c':r_______________HIE’_E_E—ZEL_JE—ZEE_________________;_ = Generate report
= Generate risk
HT TP Fesponse .

Figure 1-5. Push tool service protocol.

1.3 NIST Software Agreement

This software was developed by employees of the National Institute of Standards
and Technology (NIST), an agency of the Federal Government. Pursuant to title
15 United States Code Section 105, works of NIST employees are not subject to
copyright protection in the United States and are considered to be in the public
domain. As a result, a formal license is not needed to use the software.

This software is provided by NIST as a service and is expressly provided "AS IS".
NIST MAKES NO WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT AND DATA ACCURACY. NIST does not
warrant or make any representations regarding the use of the software or the
results thereof including, but not limited to, the correctness, accuracy, reliability
or usefulness of the software.

Permission to use this software is contingent upon your acceptance of the terms
of this agreement.

2 SYSTEM REQUIREMENTS

2.1 Hardware Requirements

AppVet has the following minimum hardware requirements:

e 64-bit Windows recommended (Note that although AppVet is Java-based, installation
problems have been reported under Linux)

e 512MB RAM

o 1GB free hard disk space

e Network access with static IP address

2.2 Platform Requirements

AppVet requires the following to be installed on the host.

2.2.1 Java

AppVet requires Java JDK 7 to be installed. For 64-bit operating systems, it is recommended to
use 64-bit Java JDK. After installing Java JDK, set the JAVA HOME environment variable to the
path of your Java JDK root directory.

2.2.2 Android APKTool (Android only)

For Android app analysis, AppVet requires Android APKTool 2.0 to be installed. After installing
APKTool, add the path of your APKTool root directory to your PATH environment variable.
Ensure that APKTool can be executed from a console (e.g., apktool.bat on Windows).

2.2.3 Apache Tomcat

AppVet requires a web server and servlet container to be installed. Although AppVet can use any
web server or servlet container, this document describes the use of Apache Tomcat 7. For 64-bit
operating systems, it is recommended to use 64-bit Tomcat. For Windows systems, it is
recommended to use the Apache Tomcat 32-bit/64-bit Windows Service Installer to install
Tomcat. After installing Tomcat, set the CATALINA HOME environment variable to the path of
your Tomcat root directory. Note that using the Windows Service Installer will automatically set
CATALINA HOME during installation.

To manage Tomcat, add a user with attribute roles="manager—-gui" to the
$CATALINA HOME/conf/tomcat-users.xml configuration file. This will allow the user
to manage Tomcat from the Tomcat web browser Ul.

Verify proper installation of Tomcat by starting the Tomcat service, opening a browser, and
ensuring the Tomcat page is visible at http: //<host>:<port>. Also ensure that Tomcat
starts automatically after reboot.

AppVet recommends the use of Secure Socket Layer (SSL). To enable SSL for Apache Tomcat,
add an SSL-enabled connector to the SCATALINA HOME/conf/server.xml configuration
file. For example:

<Connector SSLEnabled="true" clientAuth="false"
keystoreFile="C:\mykeystore.jks"
keystorePass="mypasswordl23!" maxThreads="150"
port="443" protocol="HTTP/1.1" scheme="https"
secure="true" sslProtocol="TLS"/>

Note that when using SSL, a keystore containing a valid certificate should reside on the host.
Note that for production systems, a certificate from a Certificate Authority (CA) should be used
in lieu of a self-signed certificate.

224 MySQL

AppVet requires a relational database to be installed. Although AppVet can use any relational
database that supports JDBC, this document describes the use of MySQL 5 Community Server
Edition. For 64-bit operating systems, it is recommended to use 64-bit MySQL.

3 INSTALLATION

AppVet installation involves:

Creating MySQL database and tables.

Adding an AppVet administrator account to the database.

o Creating the SAPPVET FILES HOME directory and related AppVet files.
e Copying the AppVet Web Appllcatlon aRchive (WAR) file to Tomcat.

For specifications of the AppVet database and tables, see Appendix E, Database Schemas.

3.1 AppVet Installer

Set the environment variable APPVET FILES HOME to a directory path on the host system. It is
recommended to use a path that does not contain spaces or special characters. For example, use
C:\appvet files on Windows.

Next, download the appvet 1.0 installer.zip file and extract it to your host system.

Open a console and change directory to the extracted AppVet installer directory
/appvet 1.0 installer. From the console, run the AppVet installer using:

> java —-jar AppVetlInstaller.jar

Here, you should see the AppVet installer application as shown in Figure 3-1.

AppVet Installer - |EI|5|

NIST

AppVet

Mobile App Vetting System

MNext |

Figure 3-1. AppVet installer.

Select Next to view the Host dialog as shown in Figure 3-2.

AppVet Installer -0 =|
~Host

{* Use Hostname: Ihnst.example.cum ? |

{~ Use Static IP: |129.6.219.15? ? |

{~ Use DHCP ? |
[~ Keep Apps ? |

~Java
JAVA_HOME: |-: ‘\avaljdk?. 11-64bit

Cancel | Mext |

Figure 3-2. Host dialog.

The Host dialog provides the following options:

e Use Hostname: This option should be selected for production systems or development
systems that have a fully-qualified domain name (FQDN).

e Use Static IP: This option should be selected for development systems if a static IP is
available. This option should not be selected for production systems.

o Use DHCP: This option should be selected for development systems using a dynamic IP
address.

o Keep Apps: This option should be selected if apps should be archived on the system. If
this option is not selected, apps will be deleted after they are processed. Note that keeping
apps on the system may result in significant disk space usage.

Select Next to view the Administrator dialog as shown in Figure 3-3. Enter the AppVet
administrator account information. Note that additional administrators can be added later. Select
Next to view the Platform dialog as shown in Figure 3-4.

Select SSL if Secure Socket Layer is enabled for your Tomcat server. In addition, center the
primary port of your Tomcat server. Note that this information must match your Tomcat
server.xml configuration. Next, add your MySQL username and password. Select Install to
view the AppVet installation progress as shown in Figure 3-5.

AppVet Installer

Figure 3-3. Admin dialog.

AppVet Installer

Figure 3-4. Platform dialog.

10

=10l x|
hreating database tables...
Adding admin account...
Creating directories...
Creating properties file...
Loading appvet.war file...
AppVet Inmstalled!

Done |

Figure 3-5. AppVet installation progress.

Files created in SAPPVET FILES HOME are shown in Figure 3-6.

SAPPVET FILES HOME

/apps - Contains received apps and related reports (initially empty)
/conf

L —AppVetProperties.xml - AppVet configuration file
L——/tool adapters
L——appinfo.xml - Android meta-data configuration file
registration.xml - AppVet registration configuration file
L—android-cert-test.xml — Example tool service adapter
/1logs
appvet log.txt - AppVetlog

Figure 3-6. AppVet files directory.

3.2 AppVet Configuration

When AppVet is installed, it is configured with default values that should be appropriate in most
cases. The AppVet configuration file AppvetProperties.xml is located in the

$APPVET FILES HOME/conf directory. The specification for AppvetProperties.xml
is defined in Appendix C, AppVet Properties Schema.

11

3.3 Tool Service Configuration

AppVet accesses a tool service using a tool service adapter. A tool service adapter is an XML
configuration file that defines properties of a tool service including the service's required (REST)
API parameters. A tool service adapter's structure is defined in Appendix D, Tool Service
Adapter Schema. Typically, tool service adapters will be provided by the tool vendor, developer,
or user that provides a tool service for an existing tool. Thus, tool service adapters require little or
no configuration by the AppVet administrator.

Adding a new tool service to AppVet involves adding a new tool service adapter to the
$APPVET HOME/conf/tool adapters directory. When adding a new tool configuration
file, AppVet automatically adds a new entry for the tool into the database. Note that newly added
tools are not applied to previously processed apps. Instead, a tool status of N/A is displayed for
such apps.

Tool services can be removed from AppVet by removing their corresponding adapter from the
$SAPPVET HOME/conf/tool adapters directory. Removing a tool from AppVet will hide
results for the tool even if an app has been previously processed by the tool. However, AppVet
will continue to store all previously generated results for the tool in its repository. If the tool is
later re-added to the system, AppVet will display the tool's results for previously processed apps.
To ensure proper operation of AppVet, ensure that Tomcat is shut down before adding or
removing a tool service adapter.

The AppVet administrator must ensure that tool service adapters for all desired tools are present
in SAPPVET HOME/conf/tool adapters. Do notinclude adapters for tool services that
are not available to AppVet or that AppVet cannot authenticate to. Doing so will lead to AppVet
system errors for those tools.

12

4 USER'S GUIDE

4.1 Launching AppVet

To launch AppVet, start the Tomcat server and open a browser to the AppVet URL:
https://<host>:<port>/appvet where <host>:<port> isthe hostname or IP
address and port number of your server. The AppVet login screen should be visible as shown in
Figure 4-1.

+ Aopvet x

< C' & https://appsec.nist.gov/appvet/ vo|

NIST

AppVvet

Mobile App Vetting System

USERNAME

PASSWORD

LOGIN

Figure 4-1. AppVet login screen.

4.2 App Management Interface

After logging into AppVet, the AppVet app management interface is displayed as shown in
Figure 4-2. The AppVet app management interface comprises two main panels: an apps list panel
on the left and an app information panel on the right. The apps list panel displays apps that have
been uploaded to the system while the app information panel displays information about the
selected app. The apps list panel displays general information about uploaded apps including their
AppVet-generated app ID, app name, current status and risk assessment, user (app owner), and
the date/time when the app was uploaded to the system. The app info panel contains information
about a selected app including:

App name and icon

Version number

Registration and app pre-processing statuses
Tool service reports

Tool service status and risk assessments

13

' Applet x

« C' | hitps://appsec.nist.gov/appvet/ o % =

AppVvet a NIST

Mobile App Vetting System
Steve Q. Help Admin

Apps HE IR AL IR SN |
s — com.example.FunGame
1D App Status User Date/Time Version: 5.1.0
3393884 * comexample.Med PASS steveq 2014-04-05 20:36:47
- PreProcessing
X u 1 04 -36:
2387818 . com.example Utility PASS steveq 2014-04-05 20-:36:13 Registration PASS Results
1021678 ¥ com.example FunGame WARNING steveq 2014-04-05 20:35:38 Android Manifest PASS Results
5447891 B comexample Mai PASS steveq 2014-04-05 20:34:56 | Tools
Test Tool 1 PASS Results
Test Tool 2 Results

W4 1dof4 > ¥

Last updated: 2014-03-20 18:06:12Z

Figure 4-2. AppVet app management interface.

4.2.1 Operation Buttons

The apps list panel contains operation buttons used to manage apps and their related reports.
Table 4-1 describes the functions of AppVet operation buttons.

Table 4-1. AppVet operation buttons.

Icon | Name Description
View All View all apps.
Upload Upload app file.

Download app, report, or TA Release Kit reports for selected
app.

Set Report Set (or override) report and risk assessment.

Download

Delete App Delete selected app.

View Log View log for selected app.

NEERRE

14

4.2.2 Menus

AppVet provides three menus: User settings, Help, and Admin. The User settings menu is

displayed as the user's first name and first letter of the last name in the top left corner as shown in
Figure 4-3.

Steve Q. Help Admin

Account Settings
My Apps

Logout

Figure 4-3. User settings.

The User settings menu allows users to reset their account setting information (via Account
Settings), view apps that they have uploaded (via My Apps), and log out (via Logout).

The Help menu provides help-related information.

For AppVet administrators, the Admin menu allows viewing of the AppVet system log as well as
ability to manage AppVet users.

4.2.3 Tool Status

In the app information panel, each tool service is associated with a processing status or risk
assessment as shown in Figure 4-4.

PreProcessing

Registration PASS Results
Android Manifest PASS Results
Tools

Test Tool 1 PASS Results
Test Tool 2 Results

Figure 4-4. Tool statuses.

15

A tool service status indicates the current processing status of, or the risk assessment generated
by, a tool service. In general, the risk assessment generated by a tool service should conform to a
standardized risk scoring system, such as the Common Vulnerability Scoring System (CVSS).
AppVet also requires that these assessments be mapped to one of three risk categories: PASS,
WARNING, or FAIL. Table 4-2 describes these risk assessment categories and AppVet tool
service statuses.

Table 4-2. Tool status and risk assessment descriptions.

Type Tool Status Description
N/A No status information is available for the tool.
, PENDING App is waiting to be submitted to the tool service.
g:gtcuesssmg SUBMITTED App has been sent to the tool service.
PROCESSING | Tool service is analyzing the app.
ERROR Tool service could not successfully analyze the app.
_ PASS Tool service designates app as low-risk.
E'Sk WARNING Tool service designates app as moderate-risk.
ssessment " < n T
FAIL Tool service designates app as high-risk.

Note that a risk assessment is only displayed after the tool has successfully completed processing.
Further note that risk assessments generated by a tool service can be later overridden if needed.
This feature is used to mitigate against false positive analysis results.

4.2.4 App Status

In the apps list panel, each app is associated with a status or risk assessment as shown in Figure
4-5.

3393884 ¥ com.example Med PASS steveq

Figure 4-5. App status.

An app status indicates the current status or risk assessment of an app which, in turn, is based on
the statuses and risk assessments of the tool services. Table 4-3 describes the AppVet app statuses
and risk assessments.

16

Table 4-3. App status descriptions.

Type App Status Description
REGISTERING | App is being registered by AppVet.
Processing PENDING App is waiting to be analyzed.
Status PROCESSING | App is being analyzed by one or more tool services.
ERROR One or more tools could not analyze the app.
PASS All tool services designated the app as low-risk.
_ At least one tool service designated the app as
Risk WARNING moderate-risk, but no tool designated the app as high-
Assessment risk.
FAIL At least one tool service designated the app as high-
risk.

Note that the decision to approve or reject an app is based on the overall risk assessment provided
by AppVet is dependent upon the policies and security requirements of the organization that owns

and operates the instance of AppVet. In addition, overall risk assessments generated by AppVet
are based solely on the risk assessments provided by the tools used.

4.3 Managing Tools

AppVet 1.0 does not currently support the management of tool service adapters from the AppVet

app management interface. However, this capability is expected in a future AppVet release.

17

5 DEVELOPER’S GUIDE

This section describes developing and building AppVet source code. Note that before editing,
compiling, and running AppVet source code, required applications, components, and platforms
must first be installed and configured as described in Section 2.

5.1 Eclipse

The AppVet source code release is distributed as an Eclipse IDE project and requires Eclipse v4.3
(Kepler) to be installed. For 64-bit operating systems, it is recommended to use 64-bit Eclipse.
After installing Eclipse, install the Google Web Toolkit (GWT) plug-in by selecting Help —
Install New Software from Eclipse. Next, select Add... and enter:

https://dl.google.com/eclipse/plugin/4.3
in the location field and select Next>. Then, select the following software packages to install:

e Google Plugin for Eclipse (required)

o GWT Designer for GPE (recommended)

o SDKs/Google Web Toolkit SDK 2.5.1 (Note that AppVet has not been tested using GWT
2.6.X)

After installing these software packages, restart Eclipse.

5.1.1 Integrating Tomcat

Development of AppVet requires that Tomcat be integrated with Eclipse. To integrate Tomcat
with Eclipse, open Eclipse's Servers view by selecting Windows — Show View and select
Servers from the Server folder. This will open a Servers pane in the Eclipse IDE. Next, right-
click on the Servers pane and select New — Server. From the New Server dialog, select
Apache Tomcat v7.x then select Next. From the Add and Remove dialog, add the appvet
project to the Configured panel and select Finish. To save the modified configuration, select File
— Save from the Eclipse menu.

You will see the newly created server in Eclipse's Servers pane. Next, double-click on the newly
created server to open the server's configuration panel. Here, select Use Tomcat installation
under Server Locations and set the Deploy path to SCATALINA HOME/webapps directory.
In addition, select Serve modules without publishing under Server Options.

5.1.2 Downloading AppVet

The AppVet source code distribution can be downloaded from GitHub at
https://github.com/AppVet/appvet. Note that this source code release contains
Eclipse .project, .classpath, and . settings files to facilitate importing the project into
Eclipse. Future versions of this release, however, will remove these files and use Maven for
building AppVet.

18

https://github.com/AppVet/appvet

5.1.3 Importing AppVet

To import the appvet project in Eclipse, select File — Import — General — Existing
Projects into Workspace from Eclipse and select the /appvet directory. If errors (denoted by
a red box with an "X") are displayed on the appvet project, open the Eclipse Problems panel by
selecting Window — Show View — Problems. Then, attempt to resolve errors by right-
clicking on an error and selecting Quick Fix. As noted above, the AppVet source release
currently includes Eclipse .project, .classpath, and . settings files and these might
cause incompatibilities with your specific development environment. If so, check your Eclipse
Java Build Path properties to ensure proper referencing of libraries, classes, and source files.

5.1.4 AppVet Compilation

To compile AppVet, right-click on the AppVet project and select Google — GWT Compile.
Next, select the appvet project then Compile. Note that compiling using the GWT Compiler
will also compile all non-GWT code including the AppVet servlet.

5.1.5 Installing AppVet

Before running AppVet from the source code distribution, AppVet files and database must first
be installed and configured. The AppVet installer can be launched from Eclipse by right clicking
onthe /src/gov/nist/appvet/installer/AppVetInstaller.java file and
selecting Run As—Java Application. Next, edit the AppVet properties file

$APPVET FILES HOME/conf/AppVetProperties.xml and change the XPath value in
/Appvet/Logging/Level from INFO to DEBUG. In addition, change the XPath value in
/Appvet/Logging/ToConsole from false to true. These changes will set AppVet to
display DEBUG log messages to the Eclipse console. For production use, reset these values back
to their original values.

5.1.6 Launching AppVet

To launch AppVet from Eclipse's Servers panel, select the Start the server button on the
Servers panel. As AppVet starts up, you will see output generated in the Eclipse console. To
verify that AppVet has started, open a browser and enter the AppVet URL.:
https://<host>:<port>/appvet. At this point, the AppVet login page should be visible.

5.1.7 Exporting AppVet

To export AppVet to a production system, right-click on the appvet project in Eclipse and
select Export — WAR file and select Next. Then, select appvet as the Web project and select
the destination. To ensure optimal performance, select Optimize for Apache Tomcat v7 under
Target Runtime.

5.2 AppVet Architecture

To better understand the AppVet source code, it is necessary to understand the AppVet
architecture. The AppVet architecture comprises three main components: AppVet Servlet, GWT
Client/Server, and Tool Manager. These components are shown in Figure 5-1.

19

O Clients %

Applications Users
Browser/
Tool [y GWT Client
Services / wr .~ arwcy N\ Repository

N AppVet GWT D
\ Servlet Server
Q Report ‘ Files

Tool i
APT A Other | | "
Q Mgr |-
\ / Database

Figure 5-1. AppVet Architecture.

App

5.2.1 AppVet Servlet

The AppVet servlet implements the AppVet API for clients to interact with AppVet (see
Appendix A). The AppVet servlet is used directly by applications including app stores and third-
party applications, but is not directly accessed by users. Instead, users invoke the AppVet API via
Google Web Toolkit (GWT) Client code within a web browser.

5.2.2 GWT Client/Server

The GWT Client provides the user interface to AppVet. Here, GWT provides the web browser
widgets required for users to interact with AppVet. During development, GWT widgets are
written in Java and compiled to AJAX for deployment. In Eclipse, use the GWT Designer to
modify AppVet panels, layouts, and widgets. The GWT server supports requests from GWT
client widgets including authentication and app info requests. The GWT client communicates via
Remote Procedure Call (RPC) with the GWT server. During development, GWT servers are
written in Java and compiled as Java classes for deployment. Note that a GWT server does not
directly support file uploads from a GWT client and that file uploads from the AppVet GWT
client must be sent directly to the AppVet servlet. Figure 5-1 shows a file F being uploaded to the
AppVet servlet from a web browser containing the AppVet GWT client code.

5.2.3 Tool Manager

The tool manager is the AppVet component that manages the overall processing of an app by a
set of tool services. The tool manager is responsible for extracting an app from the queue and

20

forwarding the app to the set of available tool services as defined by the set of AppVet tool
service adapter files. The tool manager also processes reports from synchronous tools. Note that
reports from asynchronous or push-type tools are processed by the AppVet servlet.

5.2.4 Other

Other AppVet components provide a wide variety of functionality from database transactions and
file handling to input validation and logging.

5.3 AppVet Source Code Files

The AppVet source code release includes the files as shown in Figure 5-2.

/appvet
.classpath - Eclipse classpath settings
——.project - Eclipse project settings
/src
|—/gov/nist/appvet
L——/gwt - AppVet GWT client and server
L——/installer - AppVet installer
L —/properties - AppVet properties handler
L—/servlet - AppVet servlet
L——/shared - Shared AppVet and GWT utilities
L—/toolmgr - AppVet Tool manager
L /tools - AppVet internal (reserved) tools
L—/xm1 - AppVet XML utilities
fappvet installer files - AppVetinstaller files
fwar
L—/images - AppVet images
L —wEB-INF - Deployment classes and libraries
L——/1ib - Libraries
L—web. xml - Web service configuration file
disclaimer.txt - NIST Disclaimer

Figure 5-2. AppVet source code release.

The AppVet source code release comprises two main directories: /src and /war. The /src
directory contains the AppVet source code while the /war directory contains the files required
for deploying AppVet as a web application and service.

Note that it is strongly recommended to conduct AppVet development on a separate staging
machine from the production host and to ensure correct operation of AppVet on the staging
machine before being exported to the production host.

5.4 Database

21

The AppVet database, appvet, and tables are created during installation using the AppVet
installer. Appvet tables include:

e apps: Defines app-related information including app name, owner, and app status.
e status: Defines tool statuses for each app.

e users: Defines user information.

e sessions: Defines user session information.

AppVet database schemas are defined in Appendix E.

5.5 Tool Services

The data that AppVet sends to a tool service is dependent on the tool service’s RESTAPI. To be
compatible with AppVet, a tool service's APl must conform to the AppVet Tool Service
Requirements as described in Appendix B. To facilitate integration of AppVet with a tool service,
a tool service adapter is used by AppVet. This adapter should reflect the tool service's REST API,
along with additional requirements specified in Appendix B. It is expected that tool service
vendors, developers, or users that wish to wrap an existing tool as a service will provide the
corresponding ToolServiceAdapter.xml file for their service. To define a
ToolServiceAdapter.xml file, please consult the Tool Service Adapter XML schema
defined in Appendix D.

In cases where a tool exists but no convenient method for accessing the tool is available, a Java
servlet, PHP, or other type of service wrapper should be developed to support online access to the
tool. Such a wrapper should implement a REST API that conforms to the requirements as
described in Appendix B. An example tool service for verifying certificates of Android apps is
available at https://github.com/AppVet/android-cert-test. This example
includes source code that can be easily modified to support other tools and integrated with an
AppVet system.

22

https://github.com/AppVet/android-cert-test

APPENDIX A: APPVET API

This section describes the AppVet services API specification. Items enclosed by '<' and ">
denote variable values.

A1 AUTHENTICATE

The AUTHENTICATE service accepts a username and password for authenticating a client with
AppVet and returns an AppVet session ID. This session ID may then be used by the client for
further interaction with AppVet until the session expires.

A.1.1 HTTP Request

Entity Name and/or Value Description

Method GET HTTP Request method.
Parameter command = AUTHENTICATE | AppVetcommand.
Parameter username = <username> AppVet username.
Parameter password = <password> AppVet password.

A.1.2 HTTP Response

Entity Name and/or Value Description
Status Code <statuscode> HTTP status code.
Payload <sessionid> AppVet session ID.

A.2 GET_STATUS

The GET STATUS service retrieves the current status or risk assessment of an app. App status
descriptions are described in Section 4.

A.2.1 HTTP Request

Entity Name and/or Value Description

Method GET HTTP Request method.
Parameter command = GET_STATUS AppVet command.
Parameter sessionid = <sessionid> AppVet session ID.
Parameter appid = <appid> AppVet app ID.

A.2.2 HTTP Response

Entity Name and/or Value Description
Status Code <statuscode> HTTP status code.
Payload <appstatus> AppVet app status or risk assessment.

23

A.3 GET_TOOL_REPORT

The GET TOOL_ REPORT service retrieves the tool report for the specified app.

A.3.1 HTTP Request

Entity Name and/or Value Description

Method GET HTTP Request method.
Parameter command = GET_ TOOL REPORT AppVet command.
Parameter sessionid = <sessionid> AppVet session ID.
Parameter appid = <appid> AppVet app ID.
Parameter toolid = <toolid> AppVet tool ID.

A.3.2 HTTP Response

Entity Name and/or Value Description
HTTP Status Code | <statuscode> HTTP status code.
Payload <reportfile> Report file.

A4 GET_APP_LOG

The GET APP_LOG service retrieves the log for the specified app.

A.4.1 HTTP Request

Entity Name and/or Value Description

Method GET HTTP Request method.
Parameter command = GET_APP_LOG AppVet command.
Parameter sessionid = <sessionid> AppVet session ID.
Parameter appid = <appid> AppVet app ID.

A.4.2 HTTP Response

Entity Name and/or Value Description
Status Code <statuscode> HTTP status code.
Payload <applogfile> App log file.

24

A5 GET_APPVET_LOG

The GET APPVET LOG service retrieves the AppVet system log.

A5.1 HTTP Request

Entity Name and/or Value Description

Method GET HTTP Request method.
Parameter command = GET APPVET LOG AppVet command.
Parameter sessionid = <sessionid> AppVet session ID.

A.5.2 HTTP Response

Entity Name and/or Value Description
Status Code <statuscode> HTTP status code.
Payload <appvetlogfile> AppVet log file.

A.6 DOWNLOAD_REPORTS

The DOWNLOAD REPORTS service retrieves a zipped file containing all reports and logs for the

specified app.

A.6.1 HTTP Request

Entity Name and/or Value Description

Method GET HTTP Request method.
Parameter command = DOWNLOAD REPORTS AppVet command.
Parameter sessionid = <sessionid> AppVet session ID.
Parameter appid = <appid> AppVet app ID.

A.6.2 HTTP Response

Entity Name and/or Value Description
Status Code <statuscode> HTTP status code.
Payload <reportsfile> AppVet reports file.

25

A.7 SUBMIT_APP

The SUBMIT APP service submits an app to AppVet.

A.6.1 HTTP Request

Entity Name and/or Value Description
Method POST HTTP Request method.
Parameter command = SUBMIT APP AppVet command.
Parameter sessionid = <sessionid> AppVet session ID.
Parameter appfile = <appfile> App file.
A.6.2 HTTP Response
Entity Name and/or Value Description
Status Code <statuscode> HTTP status code.
Response Header appid = <appid> The AppVet ID of the submitted app.

A.8 SUBMIT_REPORT

The SUBMIT REPORT service submits (or overrides an existing) tool report for the specified
app. This service is used by asynchronous and push services to submit reports as well as analysts
for overriding existing tool reports.

A.6.1 HTTP Request

Entity Name and/or Value Description

Method POST HTTP Request method.

Parameter command = SUBMIT REPORT AppVet command.

Parameter sessionid = <sessionid> AppVet session ID.

Parameter toolid = <toolid> AppVet tool ID.
The risk assessment PASS,

Parameter toolrisk = <toolrisk> WARNING, FALL. Ifthe Serv_lce
could not process the app, then risk
should have a value of ERROR.

Parameter reportfile = <reportfile> Report file.

A.6.2 HTTP Response
Entity Name and/or Value Description
Status Code <statuscode> An HTTP status code.

26

APPENDIX B: TOOL SERVICE APl REQUIREMENTS

B.1 General Requirements

B.1.1 HTTP Request

AppVet requires tool services to implement a REST API. The API specification for HTTP
Request messages must include the following:

Entity Name and/or Value Description

Method POST HTTP Request method.

Parameter username = <username> | Tool service username (if required)
Parameter password = <password> | Tool service password (if required)
Parameter appfile = <appfile> App file.

B.1.2 Additional Information

In addition, the following information must also be published by the tool service vendor:

Entity Name/Value Description

Service Name <servicename> Service name.

SDerVIc_e . <description> Service description.

escription

A lowercase alphabetic string used to

Service ID <serviceid> distinguish this tool service from other tool
services (e.g., "androwarn™).

Report File Type TXT/HTML/PDF/RTF Report file type.

Service Type SYNCHRONOUS/)

Protocol ASYNCHRONOUS/ Tool service type.

PUSH

B.2 Synchronous Response

AppVet requires that synchronous services return the following in an HTTP Response message.
Here, the risk assessment determined by the tool service should be defined as the named header
toolrisk inthe HTTP Response message. The risk assessment value <toolrisk> should be
based on a standardized scoring system such as the Common Vulnerability Scoring System
(CVSS) and mapped to one of three values: PASS, WARNING, or FATL as described in Section
4.2.3. If an error occurs with the tool service, then ERROR should be returned as the toolrisk
header value.

27

Entity Name/Value Description

Status Code <code> HTTP status code.
Response Header toolrisk = <toolrisk> The risk assessment.
Payload <reportfile> Report file.

B.3 Asynchronous Request

AppVet requires that asynchronous services support an appid parameter in an incoming HTTP
Request message.

Entity Type Name/Value Description

The AppVet ID of the submitted app. When
returning reports and risk assessments back to
AppVet, this ID should be included. See the
SUBMIT REPORT service in Appendix A.

Parameter | String | appid = <appid>

AppVet requires that asynchronous services return an HTTP Response message with appropriate
HTTP status code immediately after receiving an app. The HTTP status code should reflect the
state of receipt of an app and related information. Because the service is asynchronous, a separate
HTTP Request message must be used to return the service's reports and risk assessments (See
SUBMIT REPORT in Appendix A.8).

Entity Type Name/Value Description
Status Code String | <statuscode> HTTP status code.

B.4 Asynchronous and Push Reports

AppVet requires that both asynchronous and push services return reports and risk assessments via
an HTTP Request to AppVet. Here, the AppVet SUBMIT REPORT service should be used (see
Appendix A.8). Note that asynchronous and push services must have an AppVet username and
password in order to authenticate with AppVet. Further note that asynchronous and push services
do not require the use of an AppVet session ID for submitting a report and risk assessment for an

app.

28

APPENDIX C: APPVET PROPERTIES SCHEMA

Listing C-1 specifies the AppVet properties schema. This schema is available as XML Schema
(XSD) and Scalable Vector Graphic (SVG) files on the AppVet website
http://csrc.nist.gov/projects/appvet.

Listing C-1. AppVetProperties XML Schema.

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://csrc.nist.gov/projects/appvet"”
xmlns:appvet=" http://csrc.nist.gov/projects/appvet”
elementFormDefault="qualified">

<element name="AppVet'>
<annotation>
<documentation>The AppVet element defines the properties of an AppVet system.
</documentation>
</annotation>
<complexType>

<sequence>
<element name="Host" type="appvet:HostType" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The Host element defines properties of the AppVet
host.</documentation>
</annotation>
</element>

<element name="Logging" type="appvet:LoggingType"
maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The Logging element defines properties of the AppVet
logger.</documentation>
</annotation></element>

<element name="Sessions" type="appvet:SessionType"
maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The Sessions defines properties of AppVet user
sessions.</documentation>
</annotation></element>
<element name='"Database" type="appvet:DatabaseType"
maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The Database element defines properties of the AppVet
database.</documentation>
</annotation></element>

<element name="ToolServices'" type="appvet:ToolServicesType"
maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The ToolServices element defines properties common
to all AppVet tool service adapters. </documentation>
</annotation>
</element>

<element name="Apps" type="appvet:AppsType" maxOccurs="1" minOccurs="1">
<annotation>

29

http://csrc.nist.gov/groups/SNS/appvet
http://csrc.nist.gov/groups/SNS/appvet
http://csrc.nist.gov/groups/SNS/appvet

<documentation>The Apps element defines properties of AppVet
apps.</documentation>
</annotation></element>
</sequence>

</complexType>
</element>

<complexType name="LoggingType">
<sequence>
<element name="Level" type="appvet:LevelType" maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The Level element defines the level used for AppVet
logging. Level values include DEBUG, WARNING, INFO, ERROR. For example,
<Level>ERROR</Level>. The Level element should be set to DEBUG during AppVet development
and to INFO, WARNING, or ERROR for operational AppVet systems.</documentation>
</annotation></element>
<element name="ToConsole" type="boolean" maxOccurs="1" minOccurs="1">

<annotation>
<documentation>The ToConsole element defines whether to write logging
information to the console (true) or not (false). For example,

<ToConsole>true</ToConsole>. The ToConsole element should be set to true during AppVet
development and false for operational AppVet systems.</documentation>
</annotation></element>
</sequence>
</complexType>

<simpleType name="LevelType'>
<restriction base="string">
<enumeration value="DEBUG" />
<enumeration value="INFO" />
<enumeration value="WARNING" />
<enumeration value="ERROR" />
</restriction>
</simpleType>

<complexType name="DatabaseType'">
<sequence>
<element name="URL" type="anyURI" maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The URL element defines the URL of the JDBC database
connector. For example, <URL>jdbc:mysqgl://localhost/appvet</URL>.</documentation>
</annotation></element>
<element name="UserName" type="string"” maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The UserName element defines the database username. For
example, <UserName>steve</UserName>.</documentation>
</annotation></element>
<element name="Password" type="string"” maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The Password element defines the database password. For
example, <Password>mypasswordl234</Password>.</documentation>
</annotation></element>
</sequence>
</complexType>

<complexType name="AndroidType'>
<sequence>
<element name="MinSDK" type="int" maxOccurs="1" minOccurs="1"></element>
<element name="TargetSDK" type="int" maxOccurs="1" minOccurs="1"></element>
<element name="MaxSDK" type="int" maxOccurs="1" minOccurs="0"></element>
</sequence>
</complexType>

<complexType name='"SessionType'>
<sequence>
<element name="Timeout" type="int" maxOccurs="1"
minOccurs="1">
<annotation>

30

<documentation>The Timeout element defines the duration (in
milliseconds) of a user session. For example, <Timeout>1800000</Timeout>. Note that user
activity that is detected by the system resets Timeout.</documentation>
</annotation>
</element>
<element name="GetUpdatesDelay" type="int" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The GetUpdatesDelay element defines the interval (in
milliseconds) to retrieve session update information. For example,
<GetUpdatesDisplay>5000</GetUpdatesDisplay>.</documentation>
</annotation>
</element>
</sequence>
</complexType>

<complexType name='"ServicesMgrType">
<sequence>
<element name="ConnectionTimeout" type="int" maxOccurs="1"
minOccurs="1"></element>
<element name="SocketTimeout" type="int" maxOccurs="1" minOccurs="1"></element>
<element name="Timeout" type="int" maxOccurs="1" minOccurs="1"></element>
</sequence>
</complexType>

<complexType name="ToolServicesType'>
<sequence>
<element name="PollingInterval" type="int" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The PollingInterval element defines the interval (in
milliseconds) to poll for new or updated app information. For example,
<PollingInterval>2000</PollingInterval>.</documentation>
</annotation>
</element>
<element name="StaggerInterval" type="int" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The StaggerInterval element defines the delay (in
milliseconds) to invoke a tool on an app. For example,
<StaggerInterval>1000</StaggerInterval>.</documentation>
</annotation>
</element>
<element name="ConnectionTimeout" type="int" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The ConnectionTimeout element defines the maximum time
permitted (in milliseconds) to establish a connection to a remote tool service.
</documentation>
</annotation>
</element>
<element name="SocketTimeout" type="int" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The SocketTimeout element defines the maximum time
permitted (in milliseconds) to receive data from a remote tool service.</documentation>
</annotation>
</element>
<element name="Timeout" type="int" maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The Timeout element defines the maximum time permitted (in
milliseconds) for a synchronous service to complete.</documentation>
</annotation></element>
</sequence>
</complexType>

<complexType name="HostType'>
<sequence>
<!-- Hostname must be a Fully Qualified Domain Name (FQDN)
that includes both a local

31

hostname and a domain name. This is required due to reliability
issues in deriving the FQDN from the host IP. Because AppVet
clients must connect to AppVet server (s) using the FQDN, it is
necessary to require the admin to define this property. Note
that if a FQDN is used for the host, all clients must also
use the same FQDN when connecting to the host. Similarly,
if an IP address in lieu of an FQDN for the host, all clients
must connect to the host using that IP address.-->
<element name="Hostname" type="string" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The Hostname element defines the fully qualified domain
name (FQDN) or IP address of the host. For example,
<Hostname>myhost.examlpe.com</Hostname>. If DHCP is used, Hostame must have the value
Hostname="DHCP".</documentation>
</annotation>
</element>
<element name="SSL" type="boolean" maxOccurs="1"
minOccurs="1">

<annotation>
<documentation>The SSL element defines whether SSL is used by the
Tomcat server (true) or not (false). For example, <SSL>true</SSL>. Note that the value

of SSL (true or false) must match the Tomcat server configuration as defined in
SCATALINA HOME/conf/server.xml.</documentation>
</annotation>
</element>
<element name="Port" type="string" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The Port element defines the Tomcat port number for
accessing AppVet. For example, <Port>8080</Port>. Note that the value of Port must match
the Tomcat server configuration as defined in
$CATALINA HOME/conf/server.xml.</documentation>

</annotation>
</element>
<!-- Defines whether to keep received apps (true) or delete them
after processing (false). -->
</sequence>
</complexType>

<complexType name="AppsType'>
<sequence>
<element name="KeepApps'" type="boolean" default="false" maxOccurs="1"
minOccurs="1">
<annotation>
<documentation>The KeepApps element defines whether AppVet should keep
(true) or delete (false) received apps. Note that keeping apps on the system can lead to
large disk usage.</documentation>
</annotation></element>
</sequence>
</complexType>
</schema>

32

APPENDIX D: TOOL SERVICE ADAPTER SCHEMA

Listing D-1 specifies the tool service adapter schema. This schema is available as XML Schema
(XSD) and Scalable Vector Graphic (SVG) files on the AppVet website

http://csrc.nist.gov/projects/appvet.

Listing D-1. Tool Service Adapter Schema.

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"” targetNamespace="
http://csrc.nist.gov/projects/appvet"”
xmlns:appvet http://csrc.nist.gov/projects/appvet”
elementFormDefault="qualified"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<element name="ToolServiceAdapter'>
<annotation>
<documentation>The ToolServiceAdapter defines properties for an AppVet tool
service.</documentation>
</annotation>
<complexType>
<sequence>
<element name="Description" type="appvet:DescriptionType"
maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The Description element defines general information
about an AppVet tool service.</documentation>
</annotation></element>
<element name="Protocol" type="appvet:ProtocolType"
maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The Protocol element defines protocol information for an
AppVet tool service.</documentation>
</annotation></element>
</sequence>
</complexType>
</element>

<complexType name="DescriptionType'>
<sequence>
<element name="Name" type="string" maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The Name element defines the name of an AppVet tool
service. For example, <Name>My Android Tester</Name>.</documentation>
</annotation></element>
<element name="Id" maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The Id element defines the ID of the AppVet tool
service. The Id element must be alphabetic lowercase. For example,
<Id>myandroidtester</Id>.</documentation>
</annotation>
<simpleType>
<restriction base="string'">
<pattern value="[a-z]+" />
</restriction>
</simpleType>
</element>
<element name="VendorName" type="string" maxOccurs="1"
minOccurs="0" >
<annotation>
<documentation>The VendorName element defines the vendor name of the
AppVet tool service. For example, <Vendor>Example, Inc.</Vendor>.</documentation>
</annotation></element>

33

http://csrc.nist.gov/groups/SNS/appvet
http://csrc.nist.gov/groups/SNS/appvet
http://csrc.nist.gov/groups/SNS/appvet

<element name="VendorWebsite" type="anyURI" maxOccurs="1"
minOccurs="0" >
<annotation>
<documentation>The VendorWebsite element defines the vendor's website. For
example, <VendorWebsite>https://www.example.com</VendorWebsite>.</documentation>
</annotation></element>
<element name="ReportFile" type="appvet:ReportFileType"
maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The ReportFile element defines the file type of the tool
service report. The ReportFormat element must be TXT, PDF, HTML, or RTF. For example,
<ReportFile>TXT</ReportFile>.</documentation>
</annotation></element>
</sequence>
</complexType>

<complexType name="ProtocolType">
<annotation>
<documentation>This type defines a remote AppVet-compatible tool
service
as synchronous or asynchronous.
</documentation>
</annotation>
<sequence>
<element name="Type" type="appvet:ProtocolNameType"
maxOccurs="1" minOccurs="1">
<annotation>
<documentation>The Type element defines the service protocol for the
AppVet tool service. The Type element value must be SYNCHRONOUS, ASYNCHRONOUS, PUSH, or
INTERNAL.</documentation>
</annotation>
</element>
<choice>
<element name="Synchronous" type="appvet:SynchronousType" >
<annotation>
<documentation>The Synchronous element defines the properties of an
AppVet synchronous tool service.</documentation>
</annotation></element>
<element name="Asynchronous" type="appvet:AsynchronousType" >
<annotation>
<documentation>The Asynchronous element defines the properties of an
AppVet asynchronous tool service.</documentation>
</annotation></element>
<element name="Push" type="appvet:PushType" >
<annotation>
<documentation>The Push element defines the properties of an AppVet
push tool service.</documentation>
</annotation></element>
<element name="Internal" type="appvet:InternalType" >
<annotation>
<documentation>The Internal element defines the properties of an AppVet
internal tool.</documentation>
</annotation></element>
</choice>
</sequence>
</complexType>

<simpleType name="ReportFileType'>
<restriction base="string'">
<enumeration value="TXT" />
<enumeration value="HTML" />
<enumeration value="PDF" />
<enumeration value="RTF" />
</restriction>
</simpleType>

<complexType name='"SynchronousType'">
<annotation>
<documentation></documentation>
</annotation>
<sequence>

34

<element name="Request'" type="appvet:HTTPRequestType"
minOccurs="1" maxOccurs="1">
<annotation>
<documentation>The Request element defines an HTML Form to be sent to an
AppVet tool service via an HTTP Request message.</documentation>
</annotation>
</element>
<element name="Response'" type="appvet:HTTPResponseType"
maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The Response element defines properties for the response
from an AppVet synchronous tool service.</documentation>
</annotation></element>
</sequence>
</complexType>

<complexType name="AsynchronousType'>
<annotation>
<documentation></documentation>
</annotation>
<sequence>
<element name="Request'" type="appvet:HTTPRequestType"
minOccurs="1">
<annotation>
<documentation>The Request element defines an HTML Form to be sent to an
AppVet tool service via an HTTP Request message.</documentation>
</annotation>
</element>
<element name="Response'" type="appvet:HTTPResponseType"
maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The Reponse element defines the payload of an AppVet tool
service response. </documentation>
</annotation></element>
</sequence>
</complexType>

<complexType name="PushType'>
<sequence>
</sequence>

</complexType>

<complexType name="InternalType">
<sequence>
</sequence>

</complexType>

<complexType name="HTTPRequestType'>
<annotation>
<documentation />
</annotation>
<sequence>
<element name="URL" type="anyURI" minOccurs="1" maxOccurs="1">
<annotation>
<documentation>The URL element defines the URL of the AppVet tool service.
</documentation>
</annotation>
</element>
<element name="Method" type="appvet:MethodType" maxOccurs="1"
minOccurs="1" >
<annotation>
<documentation>The Action element defines the HTTP action to be invoked.
The Action element must have values GET or POST.</documentation>
</annotation></element>
<element name="Parameter" type="appvet:ParameterType"
minOccurs="1" maxOccurs="unbounded'>
<annotation>
<documentation>The FormParameter element defines the HTML form parameters
to be sent to the AppVet tool service. For asynchronous tool services, the form
parameters must include the parameter "appid" to allow the reports to be matched by
AppVet to their associated app.</documentation>

35

</annotation>
</element>
</sequence>
</complexType>

<complexType name="AsynchronousResponseType">
<sequence>
<element name="ReportPayload" type="boolean" default="false"
maxOccurs="1" minOccurs="1" >
<annotation>
<documentation>The ReportPayload element defines whether a report is
contained in the response from an AppVet asynchronous service. The value of ReportPayload
for asynchronous services must always be false.</documentation>
</annotation></element>
</sequence>
</complexType>

<complexType name='"ParameterType'>

<sequence>
<element name="Name" type="string'>
<annotation>
<documentation>The Name element defines the name of the parameter.
</documentation>
</annotation>
</element>
<element name="Value" type="string" default="DEFINED AT RUNTIME">
<annotation>

<documentation>The Value element defines the value of the parameter
element.</documentation>
</annotation>
</element>
</sequence>
</complexType>

<simpleType name="MethodType'">
<restriction base="string">
<enumeration value="POST" />
<enumeration value="GET" />
</restriction>
</simpleType>

<simpleType name="ProtocolNameType'>
<restriction base="string'">
<enumeration value="SYNCHRONOUS" />
<enumeration value="ASYNCHRONOUS" />
<enumeration value="PUSH" />
<enumeration value="INTERNAL" />
</restriction>
</simpleType>

<complexType name="HTTPResponseType'>
<sequence>
<element name="AppVetRiskHeaderName" type="string"
default="APPVET TOOL RESULT" maxOccurs="1" minOccurs="0">
<annotation>
<documentation>The AppVetRiskHeaderName element defines the
HTTP Response Header name for a synchronous tool
service's risk assessment category (ERROR, FAIL, WARNING,
or PASS). For synchronous services, the
AppVetResultHeaderName value should be
set to "toolrisk". For all service types, the AppVetRiskHeaderName
element should not be set.
</documentation>
</annotation>
</element>
<element name="ReportPayload" type="boolean" default="true"
maxOccurs="1" minOccurs="1">
<annotation>
<documentation>
The ReportPayload element defines whether the
response message contains a report file (in

36

string form). For synchronous tool services,
this value must always be true.
</documentation>
</annotation>
</element>
<element name="StatusCode" type="string" maxOccurs="unbounded"” minOccurs="0">
<annotation>
<documentation>This is the HTTP status code returned by the tool service.
</documentation>
</annotation></element>
</sequence>
</complexType>
</schema>

37

APPENDIX E: APPVET DATABASE

This section defines the appvet database schema.
E.1 Table users

Table A. users schema.

- o - +————- o o +
| Field | Type | Null | Key | Default | Extra
- o - +————- o o +
| username | varchar (32) | NO | PRI | |
| password | varchar(102) | YES | | NULL |
| org | varchar (120) | YES | | NULL |
| email | varchar (120) | YES | | NULL |
| role | varchar (48) | YES | | NULL |
| lastlogon | timestamp | NO | | CURRENT TIMESTAMP | on update
CURRENT TIMESTAMP
| fromhost | varchar (120) | YES | | NULL |
| lastName | varchar (32) | YES | | NULL |
| firstName | varchar (32) | YES | | NULL |
o o ——— - +————- o o +
Table B. Field descriptions.
o e +
| Field | Description |
o e +
username The user's ID.
password The user's password (PBKDF2 salted hash).
org User's organization.
email User's email.

I |
I I
I |
I I
| role | User's role.
I I
I |
I I
I |

lastlogon Time of last logon.
fromhost Host of last logon.
lastName User's last name.
firstName User's first name.
o o +

E.2 Table sessions

Table A. sessions schema.

o — o - - +
| Field | Type | Null | Key |
o — o - - +———— +
| sessionid | varchar (32) | NO | PRI |
| username | varchar(120) | YES I
| clientaddress | varchar (120) | YES I
| expiretime | bigint (20) | YES I
o — o - +———— +

38

_________ +_______
Default | Extra
_________ +_______

NULL I
NULL |
NULL I
NULL I
_________ +_______

sessionid
username

clientaddress

expliretime

appid
appname
packagename
versioncode
versionname
filename
submittime
status
statustime
username
clienthost

appid
appname
packagename
versioncode
versionname
filename
submittime
status
statustime
username
clienthost

Table B. Field descriptions.

P +

| Description \

P +
Session ID.

\ |
| User ID. |
| Client host. \
| Time of session expiration.

—————————————— R it e
Type | Null | Key | Default | Extra |
—————————————— e e
varchar (32) | NO | PRI | |
varchar (120) | YES | | NULL |
varchar (120) | YES \ | NULL \
varchar (120) | YES \ | NULL \
varchar (120) | YES | | NULL |
varchar (120) | YES | | NULL |
timestamp | YES | | NULL |
varchar (120) | YES \ | NULL \
timestamp | YES | | NULL |
varchar (120) | YES | | NULL |
varchar (120) | YES \ | NULL \
—————————————— Bt s e it e S

| AppVet-generated unique identifier.
| The name of the app.

| The Android package name of the app.
| The version code of the app.

| The version name of the app.

| The file name of the app.

| The time the app was submitted.

| The current status of the app.

| The time of the last status update.
| The client who submitted the app.

| The host who submitted the app.

39

E.4 Table status

The fields in the status table are dependent upon the set tools available to AppVet.

Table A. status schema.

fomm e fom e fo—m - fo—— = e it fomm - +
| Field | Type | Null | Key | Default | Extra |
fomm e fom e fo—m - fo—— = e it fomm - +
| appid | varchar (32) | NO | PRI | | |
| registration | varchar(120) | YES | | NULL | |

android | varchar (120) | YES | | NULL | |
fom e fom e fo—m - fo—— = e it fomm - +

Table B. Field descriptions.

Fmm e o +
| Field | Description |
e ittt T Tt ettt +
| appid | AppVet-generated unique identifier. |
| registration | Registration status. |
| android Android pre-processing status. |
e ittt T Tt ittt +

40

APPENDIX F: CHANGE HISTORY

7/14/14

¢ Recommended 64-bit Windows as the host OS due to problems with Linux installation.
e Removed Linux installation instructions.

5/28/14

e AppVet now returns an app ID in response to a SUBMIT APP command. The app ID is
defined by the appid header in the corresponding HTTP Response message. This change
only affects clients that programmatically interact with AppVet including app stores or
continuous integration environments.

41

	Version 1.01
	1 Introduction
	1.1 Clients
	1.2 Tools
	1.2.1 Synchronous Tool Service
	1.2.2 Asynchronous Tool Service
	1.2.3 Push Tool Service

	1.3 NIST Software Agreement

	2 System Requirements
	2.1 Hardware Requirements
	2.2 Platform Requirements
	2.2.1 Java
	2.2.2 Android APKTool (Android only)
	2.2.3 Apache Tomcat
	2.2.4 MySQL

	3 Installation
	3.1 AppVet Installer
	3.2 AppVet Configuration
	3.3 Tool Service Configuration

	4 User's Guide
	4.1 Launching AppVet
	4.2 App Management Interface
	4.2.1 Operation Buttons
	4.2.2 Menus
	4.2.3 Tool Status
	4.2.4 App Status

	4.3 Managing Tools

	5 Developer’s Guide
	5.1 Eclipse
	5.1.1 Integrating Tomcat
	5.1.2 Downloading AppVet
	5.1.3 Importing AppVet
	5.1.4 AppVet Compilation
	5.1.5 Installing AppVet
	5.1.6 Launching AppVet
	5.1.7 Exporting AppVet

	5.2 AppVet Architecture
	5.2.1 AppVet Servlet
	5.2.2 GWT Client/Server
	5.2.3 Tool Manager
	5.2.4 Other

	5.3 AppVet Source Code Files
	5.4 Database
	5.5 Tool Services

	Appendix A: AppVet API
	A.1 AUTHENTICATE
	A.1.1 HTTP Request
	A.1.2 HTTP Response

	A.2 GET_STATUS
	A.2.1 HTTP Request
	A.2.2 HTTP Response

	A.3 GET_TOOL_REPORT
	A.3.1 HTTP Request
	A.3.2 HTTP Response

	A.4 GET_APP_LOG
	A.4.1 HTTP Request
	A.4.2 HTTP Response

	A.5 GET_APPVET_LOG
	A.5.1 HTTP Request
	A.5.2 HTTP Response

	A.6 DOWNLOAD_REPORTS
	A.6.1 HTTP Request
	A.6.2 HTTP Response

	A.7 SUBMIT_APP
	A.6.1 HTTP Request
	A.6.2 HTTP Response

	A.8 SUBMIT_REPORT
	A.6.1 HTTP Request
	A.6.2 HTTP Response

	Appendix B: Tool Service API Requirements
	B.1 General Requirements
	B.1.1 HTTP Request
	B.1.2 Additional Information

	B.2 Synchronous Response
	B.3 Asynchronous Request
	B.4 Asynchronous and Push Reports

	Appendix C: AppVet Properties Schema
	Appendix D: Tool Service Adapter Schema
	Appendix E: AppVet Database
	E.1 Table users
	E.2 Table sessions
	E.3 Table apps
	E.4 Table status

	Appendix F: Change History
	7/14/14
	5/28/14

